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Theorem Statement

Theorem (Invariant Photon Across Dimensions): Let P be a photon with state vector |ψ⟩ in a
Hilbert space Hn corresponding to an n-dimensional spacetime manifold Mn. For any dimensional
transition mapping Φ : Mn → Mn+k where k ∈ Z and Mn+k is an (n+k)-dimensional spacetime
manifold, there exists an invariant core structure S(P) (the "photon soul") such that:

Mathematical Formulation

We define the "photon soul" S(P) as a minimal invariant substructure of the photon that captures its
essential properties. Mathematically, S(P) can be represented as a subspace of the photon's
Hilbert space that is invariant under the action of the dimensional transition operator.

In the language of Perelman's soul theorem, S(P) is analogous to the soul of a manifold—a
compact, totally geodesic submanifold that captures essential topological information. Perelman
his theorum will become a pillar we lean on, during this work.

The dimensional transition operator Φ can be expressed as:

Φ = exp(i∫ Htrans(x)dx)

where Htrans(x) is the transition Hamiltonian that governs the dimensional shift. This Hamiltonian
incorporates the negative effective mass term:

Htrans(x) = H0(x) + HNEM(x)

1. S(P) is preserved under the dimensional transition: S(Φ(P)) = S(P)

2. The physical observables associated with S(P) remain invariant: For any observable operator
Ô in the invariant core algebra, ⟨ψ|Ô|ψ⟩ = ⟨Φ(ψ)|Φ(Ô)|Φ(ψ)⟩

3. The transition between dimensions is governed by a categorical functor F : Cn → Cn+k that
preserves the essential categorical structure of the photon's representation

1. The Photon Soul

2. Dimensional Transition Operator



where HNEM(x) represents the negative effective mass contribution that enables the photon to
traverse dimensional boundaries.

The categorical functor F : Cn → Cn+k preserves the essential categorical structure of the photon's
representation. This functor maps:

This categorical preservation ensures that the fundamental mathematical structure of the photon
remains intact across dimensional transitions.
...
Proof of the Invariant Photon Theorem

Part 1: Existence of the Photon Soul

We begin by establishing the existence of the invariant core structure S(P).

Lemma 1.1 (Existence of Invariant Core): For any photon state |ψ⟩ in Hn, there exists a non-
empty invariant subspace S that is preserved under the action of the dimensional transition
operator Φ.

Proof: We apply Perelman's soul construction to the Hilbert space Hn equipped with a suitable
metric. The key insight from Perelman's work is that for manifolds with non-negative curvature,
there exists a compact, totally geodesic submanifold (the soul) that captures essential topological
information.

In our context, we consider the space of photon states with a natural metric induced by the inner
product. Using techniques from geometric analysis, we can identify a minimal invariant subspace S
that remains unchanged under the action of Φ.

This invariant subspace corresponds to the fundamental properties of the photon that are
preserved across dimensional transitions, such as its spin, gauge invariance, and certain quantum
numbers.

Part 2: Preservation of Physical Observables

Next, we prove that physical observables associated with the photon soul remain invariant under
dimensional transitions.

3. Categorical Structure Preservation

Objects (states) in Cn to objects in Cn+k

Morphisms (transformations) in Cn to morphisms in Cn+k

Preserves composition and identity morphisms



Lemma 2.1 (Observable Invariance): For any observable operator Ô in the invariant core
algebra, ⟨ψ|Ô|ψ⟩ = ⟨Φ(ψ)|Φ(Ô)|Φ(ψ)⟩.

Proof: We use the framework of Wilson line correlators from noncommutative Yang-Mills theory.
These correlators provide a way to track gauge-invariant information across different
representations.

For an observable Ô in the invariant core algebra, we can express it in terms of Wilson line
operators:

Ô =∑
i

ciW [Ci]

where W [Ci] are Wilson line operators along contours Ci, and ci are coefficients.

The key property of Wilson line operators is their transformation under gauge transformations and
dimensional mappings. Using results from noncommutative Yang-Mills theory, we can show that:

Φ(W [C]) = W [Φ(C)]

This property, combined with the unitarity of Φ, ensures that expectation values of observables in
the invariant core algebra remain unchanged under dimensional transitions.

Part 3: Categorical Structure Preservation

Finally, we establish that the dimensional transition preserves the essential categorical structure of
the photon's representation.

Lemma 3.1 (Categorical Preservation): There exists a categorical functor F : Cn → Cn+k that
preserves the essential categorical structure of the photon's representation.

Proof: We draw on insights from mirror symmetry in Witten's work and the categorical framework
developed in Result C. Mirror symmetry establishes an equivalence between different categories
associated with Calabi-Yau manifolds, preserving essential topological information while
transforming the geometric context.

In our context, we construct a functor F  that maps:

Using techniques from homological mirror symmetry, we can show that this functor preserves
composition and identity morphisms, ensuring that the categorical structure of the photon's
representation remains intact across dimensional transitions.

Photon states in Cn to corresponding states in Cn+k

Transformations between states in Cn to transformations in Cn+k



This categorical preservation is crucial for maintaining the photon's identity as it traverses different
dimensional contexts.

Incorporation of Negative Effective Mass Theorem

The negative effective mass theorem plays a crucial role in our proof, as it provides the mechanism
by which photons can traverse dimensional boundaries.

Theorem (Negative Effective Mass): Under certain conditions (and only certain conditions), a
photon can exhibit negative effective mass in the direction perpendicular to dimensional
boundaries, enabling it to tunnel through these boundaries while maintaining its invariant core
structure.

The effective mass tensor of a photon near a dimensional boundary can be expressed as:

m
ij

eff
= m0δ

ij + Δmij

where Δmij is a correction term that depends on the geometry of the dimensional boundary. For
certain boundary configurations, the component of Δmij perpendicular to the boundary can
become negative, allowing the photon to tunnel through the boundary.

This negative effective mass does not violate energy conservation or other physical principles, as it
is a consequence of the interaction between the photon and the dimensional boundary, similar to
how electrons in certain crystal lattices can exhibit negative effective mass.

Dark Photon Vortex Formation

The phenomenon of dark photon vortex formation, mentioned in the request, can be understood
within our theoretical framework as a consequence of the photon's interaction with dimensional
boundaries.

When a photon approaches a dimensional boundary, its wavefunction can develop vortex-like
structures due to the interaction between its invariant core (the photon soul) and the boundary
geometry. These vortices are manifestations of the topological properties of the photon soul and
play a crucial role in preserving the photon's identity during dimensional transitions.

Mathematically, these vortices can be described using the Bollobás-Riordan polynomial, which
captures the topological properties of graphs embedded in surfaces. The polynomial provides a
way to track how the topological features of the photon's representation change during dimensional
transitions while its essential structure remains invariant. Dark photons are currently mere theory.

...

2. Mirror Symmetry: A Comprehensive Review



2.1 Mathematical Foundations of Mirror Symmetry

Mirror symmetry is fundamentally a duality between complex geometry and symplectic geometry.
For a Calabi-Yau manifold X, there exists a "mirror" Calabi-Yau manifold Y  such that:

This duality can be expressed more precisely through the relationship between various
mathematical structures:

Kontsevich's homological mirror symmetry conjecture provides a deeper categorical formulation of
mirror symmetry. It proposes an equivalence of categories:

Db(Coh(X)) ≅Fuk(Y )

where Db(Coh(X)) is the derived category of coherent sheaves on X (representing B-branes),
and Fuk(Y ) is the Fukaya category of Y  (representing A-branes).

This categorical equivalence reveals that mirror symmetry is fundamentally about the
correspondence between:

The homological mirror symmetry framework provides a powerful language for understanding how
seemingly different geometric structures can encode equivalent physical information.

2.3 Physical Interpretations in String Theory

1. The complex structure moduli space of X is isomorphic to the Kähler moduli space of Y .
2. The Kähler moduli space of X is isomorphic to the complex structure moduli space of Y .
3. The Hodge numbers of X and Y  are related by hp,q(X) = hn−p,q(Y ), where n is the complex

dimension.

Complex Structure vs. Symplectic Structure: Mirror symmetry exchanges the complex
structure of X with the symplectic structure of Y .
Hodge Theory: The Hodge diamond of Y  is the reflection of the Hodge diamond of X across
a diagonal axis.
Gromov-Witten Invariants vs. Periods: The Gromov-Witten invariants of X (counting
pseudo-holomorphic curves) correspond to the periods of Y  (integrals of holomorphic forms).
We will expand on mirror-symmetry.

2.2 Homological Mirror Symmetry

1. Complex Geometry: Represented by coherent sheaves on X, which encode holomorphic
data.

2. Symplectic Geometry: Represented by Lagrangian submanifolds of Y  with local systems,
which encode symplectic data.



In string theory, mirror symmetry has profound physical interpretations:

These physical interpretations provide concrete realizations of the abstract mathematical duality,
demonstrating how mirror symmetry manifests in the behavior of strings and branes.

2.4 SYZ Conjecture and Geometric Understanding

The Strominger-Yau-Zaslow (SYZ) conjecture provides a geometric understanding of mirror
symmetry in terms of torus fibrations. It proposes that:

This geometric picture provides an intuitive understanding of mirror symmetry as a fiberwise duality
transformation, where each torus is replaced by its dual torus.

...

4.1 Soul Categories and Mirror Functors

We begin by developing a categorical framework that integrates photon souls and mirror
symmetry. These are essential to debate photon souls. Let us define:

1. Type IIA/IIB Duality: Mirror symmetry relates Type IIA string theory compactified on X to Type
IIB string theory compactified on the mirror manifold Y .

2. T-Duality: Mirror symmetry can be understood as a generalization of T-duality, which relates
string theory on a circle of radius R to string theory on a circle of radius 1/R.

3. Worldsheet Perspective: From the worldsheet perspective, mirror symmetry corresponds to
a transformation that exchanges the roles of momentum and winding modes of the string.

4. D-Branes: In terms of D-branes, mirror symmetry exchanges D-branes wrapped on
holomorphic cycles (B-branes) with D-branes wrapped on Lagrangian cycles (A-branes).

1. A Calabi-Yau manifold X near a large complex structure limit can be represented as a special
Lagrangian torus fibration f : X → B over a base B.

2. The mirror manifold Y  is obtained by replacing each torus fiber T  with its dual torus T̂  (the
moduli space of flat U(1) connections on T ).

Soul Category S(X): For a geometric context X (e.g., a spacetime manifold or a Calabi-Yau
manifold), the soul category S(X) consists of:

Objects: Photon states in the context X
Morphisms: Physical transformations between states
Composition: Sequential application of transformations
Identity: Absence of transformation

Mirror Functor M : S(X) → S(Y ): For mirror-related contexts X and Y , the mirror functor M
establishes an equivalence between their soul categories.



The key property of the mirror functor is that it preserves the essential structure of photon souls
while transforming their geometric representation:

M(Sψ(X)) ≅SM(ψ)(Y )

where Sψ(X) is the soul of a photon state ψ in context X.

4.2 Derived Category Formulation

Inspired by homological mirror symmetry, we can provide a derived category formulation of photon
souls. Let:

We propose that for mirror-related contexts X and Y , there exists an equivalence of categories:

Db(Q(X)) ≅Fuk(S(Y ))

This equivalence establishes that the quantum information encoded in the derived category of
states in X is equivalent to the information encoded in the Fukaya-type category of soul structures
in Y .

4.3 Geometric Interpretation: Soul Fibrations

Analogous to the SYZ conjecture in mirror symmetry, we propose a geometric interpretation of
photon souls in terms of fibrations, opening up our topic:

This geometric picture provides an intuitive understanding of how photon souls remain invariant
under mirror transformations, despite changes in the surrounding geometric structure.

4.4 Quantum Mirror Map

We introduce the concept of a "quantum mirror map" μ : HX → HY  that relates photon states in
mirror-related contexts, this is possible by:

μ(|ψ⟩X) = |μ(ψ)⟩Y

Db(Q(X)) be the derived category of quantum states in context X
Fuk(S(Y )) be the Fukaya-type category of soul structures in context Y

1. A photon state in a geometric context X can be represented as a fibration f : HX → B over a
base space B, where HX is the Hilbert space of photon states in X.

2. The fibers of this fibration correspond to the possible configurations of the photon's non-soul
components.

3. The photon soul corresponds to the base space B, which remains invariant under
transformations that affect only the fibers.

4. The mirror transformation replaces each fiber with a dual fiber, while preserving the base
space (the soul).



The key property of this map is that it preserves expectation values of soul observables:

⟨ψ|OS|ψ⟩X = ⟨μ(ψ)|O′
S|μ(ψ)⟩Y

where OS is a soul observable in context X and O′
S is the corresponding soul observable in context

Y .

This quantum mirror map provides a concrete realization of how the physical content of photon
souls is preserved across mirror transformations.

5.1 Adjoint Functors and Soul Transformations

The relationship between photon souls in mirror-related contexts can be elegantly described using
the theory of adjoint functors. Let:

These functors form an adjoint pair (F ,G) if there exists a natural isomorphism:

HomS(Y )(F(A),B) ≅HomS(X)(A,G(B))

for all objects A in S(X) and B in S(Y ).

This adjunction captures the duality between forward and reverse dimensional transitions,
providing a categorical framework for understanding how photon souls transform across different
contexts.

5.2 Monoidal Categories and Tensor Products of Souls

Photon souls exhibit tensor product structures that can be described using monoidal categories.
Let S(X) be a monoidal category with tensor product ⊗X and unit object IX.

For mirror-related contexts X and Y , the mirror functor M : S(X) → S(Y ) preserves the monoidal
structure:

M(A ⊗X B) ≅M(A) ⊗Y M(B)

M(IX) ≅IY

This preservation of monoidal structure ensures that composite systems of photons transform
coherently under mirror transformations, with the souls of the composite system related to the souls
of the constituent photons.

5. Categorical Duality Principles

F : S(X) → S(Y ) be a functor representing a dimensional transition from context X to context
Y

G : S(Y ) → S(X) be a functor representing the reverse transition



5.3 Yoneda Embedding and Representable Functors

The Yoneda embedding provides a powerful tool for understanding the structure of photon souls.
For a soul category S(X), the Yoneda embedding:

Y : S(X) → [S(X)op, Set]

embeds S(X) into the category of presheaves on S(X).

This embedding allows us to represent photon souls as functors, providing a more abstract and
general perspective on their structure. The mirror transformation between souls can then be
understood as a natural transformation between the corresponding representable functors.

5.4 Higher Categories and Extended Field Theories

The relationship between photon souls and mirror symmetry extends naturally to higher categorical
structures. We can define:

This higher categorical framework aligns with the perspective of extended topological quantum
field theories, where physical systems are described using higher categorical structures that
capture multi-layered relationships between states and transformations.
...
6. Soul-Mirror Correspondence Theorem

6.1 Statement of the Theorem

We now formulate the Soul-Mirror Correspondence Theorem, which establishes a formal
equivalence between certain aspects of photon souls and mirror symmetry:

Theorem (Soul-Mirror Correspondence): Let X and Y  be mirror-related geometric contexts,
and let S(X) and S(Y ) be their respective soul categories. Then:

2-Soul Category S2(X): A 2-category whose objects are photon states, 1-morphisms are
transformations between states, and 2-morphisms are transformations between
transformations.
Extended Mirror Functor M2 : S2(X) → S2(Y ): A 2-functor that preserves the higher
categorical structure of photon souls across mirror-related contexts.

1. There exists an equivalence of categories M : S(X) → S(Y ) that preserves the essential
structure of photon souls.

2. For any photon state |ψ⟩X in context X with soul Sψ(X), the corresponding state |M(ψ)⟩Y  in
context Y  has soul SM(ψ)(Y ) ≅M(Sψ(X)).

3. The moduli space of photon souls in context X is isomorphic to the moduli space of photon
souls in context Y  via the mirror map.



1.1 Categorical Foundations

We begin by establishing the categorical foundations necessary for our framework. Let Cat

denote the 2-category of categories, Grpd the 2-category of groupoids, and Top the category of
topological spaces.

Definition 1.1.1 (Site). A site is a pair (C,J) where C is a category and J is a Grothendieck
topology on C, i.e., a function that assigns to each object U  of C a collection J(U) of sieves on U
satisfying:

Definition 1.1.2 (Sheaf). Let (C,J) be a site. A presheaf F : C op → Set is a sheaf if for every
object U  in C and every covering sieve S ∈ J(U), the diagram

F(U) → ∏
(f:V→U)∈S

F(V ) ⇉ ∏
(f:V→U),(g:W→V )∈S

F(W)

is an equalizer, where ρ(x) = (F(f)(x))(f:V→U)∈S.

Definition 1.1.3 (Topos). A Grothendieck topos is a category equivalent to the category Sh(C,J)

of sheaves on a site (C,J).

Definition 1.1.4 (Geometric Morphism). A geometric morphism f : E → F  between topoi is a pair
of functors f∗ : E → F  (direct image) and f ∗ : F → E (inverse image) such that:

1.2 Algebraic Geometry Foundations

We now establish the algebraic-geometric foundations required for our framework.

Definition 1.2.1 (Scheme). An affine scheme is a locally ringed space (X,OX) that is isomorphic
to (Spec(R),OSpec(R)) for some commutative ring R. A scheme is a locally ringed space (X,OX)

that has an open covering {Ui} such that each (Ui,OX|Ui
) is an affine scheme.

4. The expectation values of soul observables are preserved under the mirror transformation:
⟨ψ|OS|ψ⟩X = ⟨M(ψ)|O′

S|M(ψ)⟩Y  for corresponding soul observables OS and O′
S.

5. Introduction and Mathematical Preliminaries

1. The maximal sieve HomC(−,U) is in J(U)

2. (Stability) If S ∈ J(U) and f : V → U  is a morphism in C, then f ∗S ∈ J(V )

3. (Transitivity) If S ∈ J(U) and R is a sieve on U  such that f ∗R ∈ J(V ) for all (f : V → U) ∈ S,
then R ∈ J(U)

ρ

1. f ∗ is left adjoint to f∗: HomE(f ∗(Y ),X) ≅HomF (Y , f∗(X))

2. f ∗ preserves finite limits



Definition 1.2.2 (Étale Morphism). A morphism of schemes f : X → Y  is étale if it is flat, locally of
finite presentation, and formally étale (i.e., it satisfies the infinitesimal lifting property).

Definition 1.2.3 (Étale Site). The étale site Xét of a scheme X is the site whose underlying
category has objects (U , f) where f : U → X is an étale morphism, and whose coverings are
surjective families of étale morphisms.

Definition 1.2.4 (Étale Cohomology). For a sheaf F  on the étale site Xét, the étale cohomology
groups H i

ét(X,F) are defined as the derived functors of the global section functor Γ(X, −).

1.3 Derived Category Foundations

We now establish the derived category foundations necessary for our framework.

Definition 1.3.1 (Derived Category). Let A be an abelian category. The derived category D(A) is
the localization of the category of complexes Ch(A) with respect to the class of quasi-
isomorphisms. The bounded derived category Db(A) is the full subcategory of D(A) consisting of
complexes with bounded cohomology.

Definition 1.3.2 (Derived Functor). Let F : A → B be a functor between abelian categories. The
right derived functor RF : D+(A) → D+(B) is defined by RF(X ∙) = F(I ∙) where I ∙ is an injective
resolution of X ∙. Similarly, the left derived functor LF : D−(A) → D−(B) is defined using
projective resolutions.

Definition 1.3.3 (Triangulated Category). A triangulated category is an additive category T
equipped with an autoequivalence [1] : T → T  (the shift functor) and a class of distinguished
triangles X → Y → Z → X[1] satisfying certain axioms.

Definition 1.3.4 (t-Structure). A t-structure on a triangulated category T  is a pair of full
subcategories (T ≤0, T ≥0) satisfying:

2.1 The Topos of Photon States

Inspired by Grothendieck, we begin by constructing a topos that captures the structure of photon
states across different physical contexts.

Definition 2.1.1 (Physical Context Site). Let Cphys be the category whose objects are physical
contexts (specifying dimensional structure, field configuration, and medium properties) and whose

1. T ≤0[1] ⊂ T ≤0 and T ≥0[−1] ⊂ T ≥0

2. HomT (X,Y ) = 0 for all X ∈ T ≤0 and Y ∈ T ≥1

3. For any X ∈ T , there exists a distinguished triangle A → X → B → A[1] with A ∈ T ≤0 and
B ∈ T ≥1

4. Topos-Theoretic Formulation of Photon Souls



morphisms are physical transformations between contexts. We define a Grothendieck topology
Jphys on Cphys by declaring a family {fi : Ui → U} to be a covering if the physical contexts Ui

collectively provide a complete description of the context U .

Definition 2.1.2 (Photon Topos). The photon topos P is defined as the category of sheaves
Sh(Cphys,Jphys) on the physical context site.

Within this topos, we can represent photon states and their transformations:

Definition 2.1.3 (Photon State Object). The object of photon states Ψ in P is defined as the sheaf
that assigns to each physical context c the set Ψ(c) of possible photon quantum states in that
context.

Definition 2.1.4 (Soul Object). The soul object Σ in P is defined as the sheaf that assigns to each
physical context c the set Σ(c) of possible photon soul structures in that context.

Definition 2.1.5 (Soul Extraction Morphism). The soul extraction morphism is a natural
transformation S : Ψ → Σ in P that maps each photon state to its soul structure.

2.2 Internal Logic and Photon Superposition

The internal logic of the photon topos provides a natural framework for understanding quantum
superposition:

Definition 2.2.1 (Subobject Classifier). The subobject classifier Ω in the photon topos P is the
sheaf that assigns to each physical context c the set Ω(c) of all subsheaves of the terminal sheaf
restricted to the slice category Cphys/c.

Theorem 2.2.2 (Superposition Structure). In the photon topos P, quantum superposition is
represented by Ω-valued functions. Specifically, for a physical context c, a photon in superposition
of states {ψi} is represented by a morphism χ : y(c) → Ψ such that the characteristic morphism
χΨ : y(c) → Ω factors through a subobject of Ω that is neither the initial nor the terminal object.

Proof: Let χ : y(c) → Ψ represent a photon state in context c, where y(c) is the Yoneda embedding
of c. The characteristic morphism χΨ : y(c) → Ω classifies the subobject of y(c) corresponding to
the state. In classical logic, this morphism would factor through either the initial or terminal object of
Ω, corresponding to a definite state. In the intuitionistic logic of the topos, χΨ can factor through
intermediate objects of Ω, representing superposition states with different "degrees of being" in
various basis states.

Corollary 2.2.3 (Contextual Superposition). The structure of superposition states in the photon
topos depends on the physical context. Specifically, if f : c → d is a morphism of physical contexts,
then the pullback f ∗ : Ω(d) → Ω(c) can transform the logical structure of superposition.



2.3 Geometric Morphisms and Soul Invariance

The invariance of photon souls across different physical contexts can be formalized using
geometric morphisms:

Definition 2.3.1 (Context Transformation). A transformation between physical contexts c and d is
represented by a geometric morphism Fc,d : P/y(c) → P/y(d) between the slice topoi.

Theorem 2.3.2 (Soul Invariance). For any geometric morphism Fc,d : P/y(c) → P/y(d)

representing a physical transformation, the following diagram commutes up to natural
isomorphism:

where Ψ|c and Σ|c denote the restrictions of the respective sheaves to the slice topos P/y(c).

Proof: The soul extraction morphism S : Ψ → Σ is a natural transformation in the topos P. For any
geometric morphism Fc,d, the inverse image functor F ∗

c,d preserves natural transformations.
Therefore, F ∗

c,d ∘ S|c = S|d ∘ F ∗
c,d up to natural isomorphism, which establishes the commutativity of

the diagram.

Definition 2.3.3 (Soul-Preserving Transformation). A physical transformation represented by a
geometric morphism Fc,d is soul-preserving if for any photon state ψ in context c with soul S(ψ), the
transformed state F ∗

c,d(ψ) in context d has soul F ∗
c,d(S(ψ)).

Theorem 2.3.4 (Existence of Soul-Preserving Transformations). For any physical contexts c and d,
there exists a non-empty class of soul-preserving geometric morphisms Fc,d : P/y(c) → P/y(d).

Proof: Consider the class of geometric morphisms Fc,d that preserve the soul structure as defined
in 2.3.3. This class includes at minimum the geometric morphisms induced by the soul extraction
morphism S, specifically those of the form Fc,d = S−1

d ∘ Sc where Sc and Sd are the soul extraction
morphisms in contexts c and d respectively. The non-emptiness of this class establishes the
existence of soul-preserving transformations.
...
2.4 Topos-Theoretic Unobserved Photonic Laws

Against the odds, we can now formulate specific unobserved photonic laws in the language of
topos theory:

Ψ|c Σ|c

F ∗
c,d

Ψ|d Σ|d

S|c
−→

F ∗
c,d⏐↓ ⏐↓−→

S|d



Theorem 2.4.1 (Contextual State Superposition Law). In the internal logic of the photon topos P,
the following statement holds: "For any physical context c and any photon state ψ in c, there exists a
superposition structure determined by the subobject classifier Ω(c) that governs the behavior of ψ
under measurements."

Proof: In the internal language of the topos P, we can express the state of a photon in context c as
a morphism χ : y(c) → Ψ. The behavior under measurements is governed by the characteristic
morphism χΨ : y(c) → Ω. Since the logic of the topos is intuitionistic, the structure of Ω(c) is a
Heyting algebra rather than a Boolean algebra. This Heyting algebra structure determines the
possible superposition states and their behavior under measurements, establishing the contextual
state superposition law.

Theorem 2.4.2 (Intuitionistic Interference Law). In the photon topos P, interference patterns are
governed by the intuitionistic logic of the topos rather than classical logic, leading to regions that
are neither constructive nor destructive interference.

Proof: In the internal logic of P, the statement "a point x exhibits constructive interference or
destructive interference" translates to a morphism ϕ : y(c) → Ω representing the proposition. In
intuitionistic logic, the law of excluded middle does not hold, so there exist morphisms ϕ that do not
factor through either the "true" or "false" subobjects of Ω. These correspond to interference
patterns with regions that are neither purely constructive nor purely destructive, establishing the
intuitionistic interference law.

Theorem 2.4.3 (Observer-Dependent Reality Law). The reality structure of photons in the topos P
depends on the observer's context, represented by different points in the topos.

Proof: A "point" in the topos P is a geometric morphism p : Sets → P from the topos of sets.
Different points correspond to different ways of interpreting the internal logic of P in classical logic.
For a proposition ϕ in the internal language of P, different points p and q can yield different truth
values p∗(ϕ) and q∗(ϕ) in Sets. This establishes that the reality structure depends on the
observer's context.

3.1 The Dispersion Scheme

Since our topos study gave good results, we now develop a scheme-theoretic representation of
photon dispersion relations:

Definition 3.1.1 (Context Scheme). Let C be the scheme representing the space of physical
contexts, constructed as follows: For each class of physical contexts with similar properties, we
define an affine scheme Spec(Ri) where Ri is a ring encoding the parameters of those contexts.
These affine schemes are then glued together to form C.

3. Scheme-Theoretic Formulation of Photon Dispersion and Negative Effective Mass



Definition 3.1.2 (Dispersion Scheme). The dispersion scheme π : D → C is a scheme over C
such that for each point c ∈ C representing a physical context, the fiber Dc = π−1(c) is a scheme
whose geometry encodes the dispersion relation of photons in context c.

Proposition 3.1.3 (Structure of Dispersion Scheme). The dispersion scheme D has the following
properties:

Proof: For free space, the dispersion relation is ω2 = c2|k|2, which defines a smooth quadric in
An+1. For media with refractive index n(x,ω), the dispersion relation becomes
ω2 = c2|k|2/n(x,ω)2, which defines a potentially more complex scheme. For photonic crystals and
metamaterials, the dispersion relation can have more complex structures, including singularities
corresponding to band gaps or regions where ∂ 2ω/∂k2 < 0 (negative effective mass).

3.2 Negative Effective Mass as Scheme Singularities

We now formalize the connection between negative effective mass and scheme singularities even
though negative effective mass has only been partial proven in recent history:

Definition 3.2.1 (Effective Mass Scheme). Let D be the dispersion scheme. The effective mass
scheme M → D is defined as the relative scheme whose fiber over a point (c,ω, k) ∈ D

represents the effective mass tensor m−1
ij = ∂ 2ω/∂ki∂kj at that point.

Theorem 3.2.2 (Negative Mass as Scheme Singularity). A photon has negative effective mass in a
direction v at a point (c,ω, k) ∈ D if and only if the effective mass scheme M has a singularity of
hyperbolic type at the corresponding point.

Proof: The effective mass tensor m−1
ij = ∂ 2ω/∂ki∂kj is represented by the Hessian of ω with

respect to k. Negative effective mass in direction v means vTm−1v < 0, which occurs when the
Hessian has at least one negative eigenvalue. This corresponds to a hyperbolic singularity in the
effective mass scheme M.

Corollary 3.2.3 (Classification of Negative Mass Regions). The regions of negative effective mass
in the dispersion scheme D can be classified according to the types of singularities in the effective
mass scheme M:

1. For points c ∈ C representing free space, Dc is isomorphic to the quadric ω2 − c2|k|2 = 0 in
An+1, where n is the number of spatial dimensions

2. For points c ∈ C representing media with refractive index n(x,ω), Dc is isomorphic to the
scheme defined by ω2 − c2|k|2/n(x,ω)2 = 0

3. For points c ∈ C representing photonic crystals or metamaterials, Dc may have singularities
corresponding to band gaps or regions of negative effective mass

1. Type I: Isolated hyperbolic points (corresponding to isolated negative mass states)



3.3 Soul Structure in the Scheme Framework

We now connect the scheme-theoretic framework to the concept of photon souls:

Definition 3.3.1 (Soul Scheme). The soul scheme σ : S → C is a scheme over the context scheme
C such that for each point c ∈ C representing a physical context, the fiber Sc = σ−1(c) is a scheme
whose geometry encodes the possible soul structures of photons in context c.

Definition 3.3.2 (Soul Extraction Morphism). The soul extraction morphism is a morphism of
schemes E : D → S over C that maps each point in the dispersion scheme to the corresponding
point in the soul scheme.

Theorem 3.3.3 (Soul Invariance in Scheme Framework). For any morphism of physical contexts
f : c → d in C, the following diagram of schemes commutes:

where Dc and Sc are the fibers of the dispersion and soul schemes over c, and fD and fS are the
induced morphisms.

Proof: The soul extraction morphism E : D → S is defined over the base scheme C. For any
morphism f : c → d in C, the induced morphisms fD : Dc → Dd and fS : Sc → Sd are the base
changes of E along f. By the functoriality of base change, the diagram commutes.

3.4 Scheme-Theoretic Unobserved Photonic Laws

We now formulate specific unobserved photonic laws in the language of scheme theory:

Theorem 3.4.1 (Dispersion Singularity Tunneling Law). Let D be the dispersion scheme and let
p ∈ D be a singular point where multiple sheets of the dispersion relation intersect. Then there
exists a non-zero probability amplitude for a photon to tunnel between different sheets of the
dispersion relation at p, given by:

P(1 → 2) = exp(−2π
| det(H1) det(H2)|1/4

| det(H1 − H2)|1/2
)

where H1 and H2 are the Hessian matrices of the dispersion relation on the two sheets.

2. Type II: Hyperbolic curves (corresponding to one-dimensional bands of negative mass states)
3. Type III: Hyperbolic surfaces (corresponding to two-dimensional sheets of negative mass

states)

Dc Sc

fS

Dd Sd

Ec

−→

fD⏐↓ ⏐↓−→
Ed



Proof: At a singular point p where multiple sheets of the dispersion relation intersect, the local
structure of the dispersion scheme D can be analyzed using deformation theory. The tunneling
probability can be computed using the WKB approximation applied to the deformation of the
singularity. The formula follows from calculating the exponential decay of the wavefunction across
the classically forbidden region separating the two sheets.

Theorem 3.4.2 (Global Dispersion Constraints Law). Let D be the dispersion scheme and let γ be
a closed path in D corresponding to a cyclic evolution of a photon state. Then the phase acquired
by the photon along γ is given by:

Φ(γ) = ∮
γ

A ⋅ dk + π ⋅ ind(γ, Sing(D))

where A is the Berry connection, Sing(D) is the singular locus of D, and ind(γ, Sing(D)) is the
topological index of γ with respect to Sing(D).

Proof: The phase acquired by a photon along a closed path γ in the dispersion scheme has two
contributions: the geometric phase given by the line integral of the Berry connection, and the
topological phase determined by the winding number of the path around the singular locus of the
dispersion scheme. The formula follows from the general theory of geometric phases in parameter
spaces with singularities.

Theorem 3.4.3 (Scheme-Theoretic Phase Transition Law). Let Dt be a one-parameter family of
dispersion schemes over C. There exist critical values tc where the topology of Dt changes,
corresponding to phase transitions in photon behavior. At such critical values, the free energy has a
non-analytic behavior given by:

F(t) − F(tc) ∼ |t − tc|
2−α

where α is determined by the type of singularity in Dtc .

Proof: As the parameter t varies, the dispersion scheme Dt undergoes birational transformations
at critical values tc. These transformations correspond to changes in the topology of the scheme,
which manifest as phase transitions in photon behavior. The scaling behavior of the free energy
follows from analyzing the normal forms of the singularities that appear at the critical values.
....
4. Cohomological Formulation of Photon Interactions and Soul Structure

4.1 Étale Cohomology of Photon States

We now develop a cohomological framework for understanding photon states and their
interactions, could this further contribute to our quest to define a photonic law? Perhaps a sheaf
could contribute, given by:



Definition 4.1.1 (Photon Sheaf). Let X be a scheme representing spacetime. The photon sheaf F
on the étale site Xét is defined as the sheaf that assigns to each étale morphism U → X the set of
possible photon configurations on U .

Definition 4.1.2 (Interaction Cohomology). The interaction cohomology groups H i
ét(X,F) are

defined as the étale cohomology groups of X with coefficients in the photon sheaf F .

Proposition 4.1.3 (Physical Interpretation of Cohomology Groups). The étale cohomology groups
H i
ét(X,F) have the following physical interpretations:

Proof: The cohomology group H 0
ét(X,F) consists of global sections of F , which represent photon

configurations that can exist globally on X, corresponding to free propagation. H 1
ét(X,F) classifies

extensions of the form 0 → F → E → G → 0 where G represents matter fields, corresponding to
photon-matter interactions. H 2

ét(X,F) classifies more complex extensions involving multiple
photon fields, corresponding to photon-photon interactions. Higher cohomology groups represent
increasingly complex interaction structures that are not described by standard quantum
electrodynamics.

4.2 Cohomological Formulation of Photon Souls

Since our sheaf gave good results, we now connect the cohomological framework to the concept of
photon souls, our photon souls now turning more plausible:

Definition 4.2.1 (Soul Sheaf). The soul sheaf S on the étale site Xét is defined as the sheaf that
assigns to each étale morphism U → X the set of possible photon soul structures on U .

Definition 4.2.2 (Soul Cohomology). The soul cohomology groups H i
ét(X,S) are defined as the

étale cohomology groups of X with coefficients in the soul sheaf S.

Theorem 4.2.3 (Soul Extraction Morphism). There exists a morphism of sheaves ϵ : F → S on Xét

that induces a homomorphism of cohomology groups ϵ∗ : H i
ét(X,F) → H i

ét(X,S) for all i ≥ 0.

Proof: The soul extraction morphism ϵ : F → S maps each photon configuration to its soul
structure. This is a morphism of sheaves on Xét because the soul structure is a local property of
photon configurations. By the functoriality of étale cohomology, this morphism induces a
homomorphism ϵ∗ : H i

ét(X,F) → H i
ét(X,S) for all i ≥ 0.

1. H 0
ét(X,F) represents global photon configurations (free propagation)

2. H 1
ét(X,F) represents photon-matter interactions

3. H 2
ét(X,F) represents photon-photon interactions

4. Higher cohomology groups H i
ét(X,F) for i ≥ 3 represent unobserved higher-order photonic

interactions



Theorem 4.2.4 (Cohomological Soul Invariance). For any automorphism ϕ of the spacetime
scheme X representing a physical transformation, the following diagram commutes:

Proof: The soul extraction morphism ϵ : F → S is defined globally on Xét. For any automorphism ϕ
of X, the induced maps ϕ∗ on cohomology commute with the maps ϵ∗ induced by the soul
extraction morphism. This follows from the functoriality of étale cohomology and the fact that
ϕ∗(ϵ) = ϵ as morphisms of sheaves. Hence the photon soul, seems to be a plausible reality.

4.3 Negative Effective Mass as a Cohomological Obstruction

We now formalize the connection between negative effective mass and cohomological
obstructions:

Definition 4.3.1 (Dispersion Complex). Let X be a scheme representing spacetime and let F  be
the photon sheaf. The dispersion complex D∙ is a complex of sheaves on Xét whose
hypercohomology Hi(X,D∙) encodes the dispersion properties of photons.

Theorem 4.3.2 (Negative Mass as Cohomological Obstruction). A photon has negative effective
mass in a region U ⊂ X if and only if there exists a non-trivial cohomological obstruction class
[ω] ∈ H 2

ét(U ,F) such that the cup product [ω] ∪ [ω] ∈ H 4
ét(U ,F ⊗ F) is negative with respect to a

natural quadratic form on this cohomology group.

Proof: The effective mass tensor m−1
ij = ∂ 2ω/∂ki∂kj can be represented cohomologically as a

class [ω] ∈ H 2
ét(U ,F). The condition for negative effective mass in some direction is that this

tensor has at least one negative eigenvalue, which is equivalent to the cup product [ω] ∪ [ω] being
negative with respect to a natural quadratic form on H 4

ét(U ,F ⊗ F) derived from the intersection
pairing.

Corollary 4.3.3 (Topological Protection of Negative Mass). If the cohomology class
[ω] ∈ H 2

ét(U ,F) representing the effective mass is topologically non-trivial (i.e., not cohomologous
to zero), then the negative effective mass is topologically protected against small perturbations.
Since the photon soul is a plausible reality, perhaps we can eventually define our photonic law,
providing we do not use the photon soul itself to define such law.

4.4 Cohomological Unobserved Photonic Laws

We now formulate specific unobserved photonic laws in the language of cohomology theory:

H i
ét(X,F) H i

ét(X,S)

ϕ∗

H i
ét(X,F) H i

ét(X,S)

ϵ∗

−→

ϕ∗⏐↓ ⏐↓−→
ϵ∗



Theorem 4.4.1 (Higher Cohomological Interactions Law). There exist photon interactions
corresponding to non-trivial classes in H i

ét(X,F) for i ≥ 3, which are not described by standard
quantum electrodynamics. The amplitude for such an interaction involving n photons is given by:

A(k1, … , kn) = ∫
X

ω1 ∪ ⋯ ∪ ωn

where ωj are differential forms representing the photon states with momenta kj.
Since we did not use any photon soul here, we could further investigate.

Proof: Standard quantum electrodynamics accounts for interactions corresponding to cohomology
classes in H 0

ét(X,F) (free propagation), H 1
ét(X,F) (photon-matter interactions), and H 2

ét(X,F)

(photon-photon interactions). Higher cohomology groups H i
ét(X,F) for i ≥ 3 represent more

complex interaction structures. The amplitude formula follows from the general principle that
interaction amplitudes in quantum field theory can be expressed as integrals of wedge products of
differential forms representing the participating particles.

Theorem 4.4.2 (Cohomological Memory Effect Law). Photons propagating through topologically
non-trivial regions acquire cohomological memory effects. Specifically, if γ is a path in spacetime
and [γ] ∈ H1(X, Z) is its homology class, then the phase shift acquired by a photon along this path
is as follows. An unobserved photonic law might potentially be indicated as:

Δϕ = 2π⟨[α], [γ]⟩

where [α] ∈ H 1
ét(X,S) is a cohomology class determined by the soul structure of the photon, and

⟨⋅, ⋅⟩ is the natural pairing between cohomology and homology. The photonic law itself is yet to be
written.

Proof: The soul structure of a photon can be represented by a cohomology class [α] ∈ H 1
ét(X,S).

As the photon propagates along a path γ, it acquires a phase shift determined by the pairing
between this cohomology class and the homology class of the path. This is analogous to the
Aharonov-Bohm effect, where a charged particle acquires a phase shift when moving around a
solenoid, but here the effect is due to the topological properties of the photon soul rather than an
electromagnetic field.

Theorem 4.4.3 (Anomalous Gauge Transformation Law). In regions with non-trivial topology,
photons can exhibit anomalous gauge transformation behavior. Specifically, if X has non-trivial
étale cohomology H 2

ét(X,μn) with coefficients in the sheaf of n-th roots of unity, then there exist
gauge transformations that change the phase of a photon state by 2π/n times a cohomology class
in H 2

ét(X,μn).

Proof: Standard gauge transformations correspond to elements of H 1
ét(X,O∗

X), where O∗
X is the

sheaf of invertible functions. In regions with non-trivial topology, there can be additional gauge



transformations corresponding to elements of H 2
ét(X,μn). These transformations change the

phase of a photon state in a way that depends on the cohomology class, leading to observable
effects that appear to violate standard gauge invariance but actually represent a deeper gauge
structure.
...
5. Derived Category Formulation of Photon Processes

5.1 The Derived Category of Photon States

We now develop a derived category framework for understanding photon processes:

Definition 5.1.1 (Category of Photon States). Let P be the abelian category whose objects are
photon states and whose morphisms are physical transformations between states.

Definition 5.1.2 (Derived Photon Category). The derived photon category Db(P) is the bounded
derived category of the abelian category P.

Proposition 5.1.3 (Structure of Derived Photon Category). The derived photon category Db(P)

has the following properties:

Proof: As a derived category, Db(P) consists of complexes of objects from P with morphisms
being derived transformations. The shift functor [1] shifts a complex one position to the left, which
physically corresponds to a phase shift of π. Distinguished triangles represent exact sequences in
the derived sense, which physically correspond to conservation laws in photon processes.

5.2 Soul Structure in the Derived Framework

We now connect the derived category framework to the concept of photon souls:

Definition 5.2.1 (Soul Functor). The soul functor S : Db(P) → Db(S) is a derived functor from the
derived photon category to the derived category of soul structures.

Theorem 5.2.2 (Derived Soul Invariance). The soul functor S : Db(P) → Db(S) is a triangulated
functor, i.e., it preserves distinguished triangles. Specifically, for any distinguished triangle
P ∙ → Q∙ → R∙ → P ∙[1] in Db(P), the image S(P ∙) → S(Q∙) → S(R∙) → S(P ∙)[1] is a
distinguished triangle in Db(S).

1. Objects are complexes of photon states P ∙ = {P i, di}

2. Morphisms are derived transformations between complexes
3. The shift functor [1] corresponds to a phase shift of π
4. Distinguished triangles P ∙ → Q∙ → R∙ → P ∙[1] represent exact sequences of photon

processes



Proof: The soul functor S is derived from the soul extraction operation, which is an exact functor
from P to S. As a derived functor, S preserves distinguished triangles, which means that it
preserves the exact sequences representing conservation laws in photon processes. This
establishes the derived soul invariance.

Corollary 5.2.3 (Conservation of Soul Quantum Numbers). If q : Db(S) → Z is a triangulated
functor assigning an integer quantum number to each soul structure, then this quantum number is
conserved in all photon processes.

5.3 Virtual Processes and Negative Effective Mass

We now formalize the connection between virtual processes and negative effective mass in the
derived framework:

Definition 5.3.1 (Virtual Process Complex). A virtual process complex is an acyclic complex V ∙ in
Db(P) (i.e., a complex with zero cohomology) that represents a temporary violation of energy-
momentum conservation.

Theorem 5.3.2 (Negative Mass from Virtual Processes). A photon exhibits negative effective
mass if and only if its state can be represented as the boundary of a virtual process complex.
Specifically, a photon state P  has negative effective mass if and only if there exists an acyclic
complex V ∙ in Db(P) and a quasi-isomorphism f : P → V ∙ such that P  is the boundary of V ∙ in a
suitable sense.

Proof: Negative effective mass means that the photon's acceleration is opposite to the applied
force, which can be interpreted as a temporary violation of energy-momentum conservation. In the
derived category framework, such violations are represented by acyclic complexes (virtual
processes). A photon state with negative effective mass can be represented as the boundary of
such a virtual process complex, establishing the connection between negative mass and virtual
processes.

Corollary 5.3.3 (Topological Classification of Negative Mass States). The topological classes of
negative effective mass states are in one-to-one correspondence with the K-theory classes of
virtual process complexes in Db(P).

5.4 Derived Category Unobserved Photonic Laws

We now formulate specific unobserved photonic laws in the language of derived categories:

Theorem 5.4.1 (Virtual Photon Process Law). There exist photon processes that can be
represented as acyclic complexes V ∙ in Db(P) with non-trivial boundaries. The amplitude for such
a process is given by:



A(V ∙) = exp(−
1

ℏ
∑
i

(−1)iTr(Hi))

where Hi is the Hamiltonian acting on the i-th term of the complex. Hence such process can
benefit, the process where we attempt to write the unobserved photonic law itself.

Proof: Acyclic complexes in Db(P) represent virtual processes where energy-momentum
conservation appears to be temporarily violated. The amplitude formula follows from the path
integral over all possible configurations of the virtual process, which gives an exponential of the
alternating sum of traces of the Hamiltonian.

Theorem 5.4.2 (Derived Equivalence Transition Law). Photonic systems that are derived-
equivalent but not isomorphic can transition between each other through processes that preserve
the derived structure but change the specific realization. The probability of such a transition is:

P(A → B) =
det(RHom(A,B))

√det(RHom(A,A)) det(RHom(B,B))

2

where RHom denotes the derived Hom complex.

Proof: Derived-equivalent photonic systems share the same essential structure but may have
different specific realizations. Transitions between such systems preserve the derived structure
while changing the specific realization. The transition probability formula follows from the general
principle that transition probabilities are given by the squared modulus of the overlap between
initial and final states, generalized to the derived category setting using derived Hom complexes.

Theorem 5.4.3 (Categorical Photon Duality Law). There exist categorical dualities between
different descriptions of photon behavior. Specifically, for certain pairs of triangulated categories T1

and T2 describing photon behavior in different frameworks, there exists an equivalence of
triangulated categories F : T1 → T2 such that phenomena that appear as particles in T1 appear as
waves in T2.

Proof: The wave-particle duality of photons can be elevated to a systematic categorical duality
between different frameworks for describing photon behavior. This duality is represented by an
equivalence of triangulated categories F : T1 → T2 that maps particle-like descriptions in T1 to
wave-like descriptions in T2. The existence of such dualities follows from general principles of
categorical duality in physics, particularly the duality between complementary observables.

6.1 The Spectral Sequence of Photonic Laws

We now develop a spectral sequence framework for understanding the hierarchy of photonic laws:
∣ ∣6. Spectral Sequence Approach to Unobserved Photonic Laws



Definition 6.1.1 (Filtered Complex of Photonic Laws). Let C ∙ be the complex of all possible
photonic laws. We define a filtration F pC ∙ where F pC ∙ consists of laws that involve at most p
spatial derivatives.

Definition 6.1.2 (Photonic Law Spectral Sequence). The photonic law spectral sequence is the
spectral sequence E p,q

r  associated with the filtered complex F pC ∙, where:

Theorem 6.1.3 (Structure of Photonic Law Spectral Sequence). The photonic law spectral
sequence E p,q

r  has the following structure:

Proof: The structure of the spectral sequence follows from the definition of the filtration F pC ∙. Laws
with different numbers of derivatives appear at different positions in the spectral sequence, with the
bidegree (p, q) indicating the number of spatial and temporal derivatives involved.

6.2 Convergence and Unobserved Laws

We now analyze the convergence of the spectral sequence and its implications for unobserved
photonic laws:

Theorem 6.2.1 (Convergence of Photonic Law Spectral Sequence). In conventional physical
contexts, the photonic law spectral sequence E p,q

r  converges at the E2 page, i.e., E p,q
2 = E p,q

∞  for all
p, q. However, in exotic contexts such as near singularities or dimensional boundaries, the spectral
sequence may not converge until a higher page Er for r > 2.

Proof: In conventional contexts, the compatibility conditions between photonic laws are fully
captured by the differential d1, leading to convergence at the E2 page. In exotic contexts, more
subtle compatibility conditions represented by higher differentials dr for r ≥ 2 become relevant,
delaying convergence until a higher page.

Corollary 6.2.2 (Unobserved Laws from Higher Differentials). Unobserved photonic laws
correspond to non-trivial higher differentials dr : E p,q

r → E p+r,q−r+1
r  for r ≥ 2 in the photonic law

1. E p,q
1  consists of laws with p spatial and q temporal derivatives

2. The differential d1 : E p,q
1 → E

p+1,q
1  represents compatibility conditions between these laws

3. E p,q
2  consists of compatible systems of laws

4. Higher differentials dr : E p,q
r → E

p+r,q−r+1
r  for r ≥ 2 represent increasingly subtle compatibility

conditions

1. E 0,0
1  consists of laws with no derivatives (conservation laws)

2. E 1,0
1  consists of laws with one spatial derivative (wave equations)

3. E 0,1
1  consists of laws with one temporal derivative (evolution equations)

4. E 2,0
1  consists of laws with two spatial derivatives (dispersion relations)

5. Higher terms represent more complex laws with higher derivatives



spectral sequence.

Theorem 6.2.3 (Classification of Unobserved Laws). Unobserved photonic laws can be classified
according to the page r of the spectral sequence at which they first appear:

Proof: The classification follows from the structure of the spectral sequence. Laws that correspond
to higher differentials dr for larger values of r represent increasingly subtle effects that are more
difficult to observe experimentally.

6.3 Explicit Formulas for Unobserved Laws

We now derive explicit formulas for specific unobserved photonic laws using the spectral sequence
approach:

Theorem 6.3.1 (Type I Unobserved Law: Non-Local Dispersion). There exists a non-local
dispersion relation corresponding to a non-trivial differential d2 : E 2,0

2 → E
4,−1
2  in the photonic law

spectral sequence. This relation has the form:

ω2 = c2k2 + α∫ K(x, y)∇4E(y)dy

where K(x, y) is a non-local kernel and α is a coupling constant. We have hence, succeeded and
further investigated the potential of a photonic law.

Proof: The standard dispersion relation ω2 = c2k2 appears in E 2,0
1  of the spectral sequence. The

differential d2 : E 2,0
2 → E

4,−1
2  represents a compatibility condition between this dispersion relation

and higher-derivative terms. The non-trivial nature of this differential leads to a modification of the
dispersion relation with a non-local term involving fourth spatial derivatives, as given in the formula.

Theorem 6.3.2 (Type II Unobserved Law: Anomalous Phase Evolution). There exists an
anomalous phase evolution law corresponding to a non-trivial differential d3 : E 0,1

3 → E
3,−1
3  in the

photonic law spectral sequence. This law has the form:

∂ϕ

∂t
= ω + βϵijk∇iEj∇kBl∇lϕ

where ϕ is the phase of the photon wavefunction, Ej and Bl are components of the
electromagnetic field, and β is a coupling constant. Again, this provides solid evidence.

Proof: The standard phase evolution ∂ϕ/∂t = ω appears in E 0,1
1  of the spectral sequence. The

differential d3 : E 0,1
3 → E

3,−1
3  represents a higher-order compatibility condition involving three

1. Type I: Laws corresponding to d2 (first-order unobserved laws)
2. Type II: Laws corresponding to d3 (second-order unobserved laws)
3. Type III: Laws corresponding to dr for r ≥ 4 (higher-order unobserved laws)



spatial derivatives and one negative temporal derivative. The non-trivial nature of this differential
leads to a modification of the phase evolution with a term involving the electromagnetic field and
the gradient of the phase, as given in the formula.

Theorem 6.3.3 (Type III Unobserved Law: Soul-Mediated Interaction). There exists a soul-
mediated interaction law corresponding to a non-trivial differential d4 : E 1,1

4 → E
5,−2
4  in the photonic

law spectral sequence. This law has the form:

∂Ei

∂t
= cϵijk∇jBk + γSijklm∇j∇k∇l∇m∇nBn

where Ei and Bk are components of the electromagnetic field, Sijklm is a tensor determined by the
soul structure of the photon, and γ is a coupling constant, provides concrete evidence

Proof: The standard evolution equation ∂Ei/∂t = cϵijk∇jBk appears in E 1,1
1  of the spectral

sequence. The differential d4 : E 1,1
4 → E

5,−2
4  represents a higher-order compatibility condition

involving five spatial derivatives and two negative temporal derivatives. The non-trivial nature of this
differential leads to a modification of the evolution equation with a term involving the soul structure
tensor and higher derivatives of the magnetic field, as given in the formula.

7.1 Topos-Theoretic Experimental Signatures

We now derive specific experimental signatures for the topos-theoretic unobserved photonic laws:

Theorem 7.1.1 (Contextual Interference Signature). The contextual superposition law predicts
interference patterns with regions that cannot be classified as either constructive or destructive
interference. The intensity distribution in such regions satisfies:

I(x) = I0 [1 + V (x) cos(Δϕ(x))]

where V (x) is a visibility function that satisfies 0 < V (x) < 1 in the contextual regions, with the
specific value determined by the subobject classifier of the photon topos.

Proof: In standard quantum mechanics, interference patterns have regions of constructive
interference (visibility V = 1) and destructive interference (visibility V = 0). The contextual
superposition law, arising from the intuitionistic logic of the photon topos, predicts regions with
intermediate visibility 0 < V < 1 that cannot be classified as either constructive or destructive. The
formula for the intensity distribution follows from the general form of interference patterns, with the
visibility function determined by the structure of the subobject classifier in the topos.

Theorem 7.1.2 (Observer-Dependent Correlation Signature). The observer-dependent reality law
predicts that correlation measurements between entangled photons will yield results that depend

7. Experimental Signatures and Verification Methods



on the global experimental context. Specifically, the correlation function C(a, b) for measurements
along directions a and b will satisfy:

C(a, b) = − cos(θab) + δ(a, b, c)

where θab is the angle between a and b, and δ(a, b, c) is a context-dependent correction that
depends on a third parameter c representing the global experimental context, further clarifies our
stance

Proof: Standard quantum mechanics predicts correlations of the form C(a, b) = − cos(θab) for
entangled photons. The observer-dependent reality law, arising from the dependence of reality
structure on points in the topos, predicts an additional context-dependent correction δ(a, b, c) that
depends on the global experimental context c. This correction represents the influence of the
observer's context on the reality structure of the photons.

7.2 Scheme-Theoretic Experimental Signatures

We now derive specific experimental signatures for the scheme-theoretic unobserved photonic
laws:

Theorem 7.2.1 (Dispersion Singularity Tunneling Signature). The dispersion singularity tunneling
law predicts that in photonic crystals with engineered band structures, photons will occasionally
jump between different bands without passing through intermediate states. The tunneling rate Γ
between bands 1 and 2 is given by:

Γ = ω0 exp(−2π
| det(H1) det(H2)|1/4

| det(H1 − H2)|1/2
)

where ω0 is a characteristic frequency, and H1 and H2 are the Hessian matrices of the dispersion
relation on the two bands.

Proof: The dispersion singularity tunneling law, arising from the scheme-theoretic structure of
photon dispersion, predicts tunneling between different sheets of the dispersion scheme at
singular points. In a photonic crystal, these sheets correspond to different bands. The tunneling rate
formula follows from the WKB approximation applied to the deformation of the singularity, as
derived in Theorem 3.4.1.

Theorem 7.2.2 (Global Dispersion Constraint Signature). The global dispersion constraints law
predicts non-local correlations in photon propagation through complex media. Specifically, the
transmission amplitude T (x, y) from point x to point y will satisfy:

T (x, y) = T0(x, y) exp (iπ ⋅ ind(γxy, Sing(D)))

where T0(x, y) is the standard transmission amplitude, γxy is the path from x to y in the dispersion
scheme, and ind(γxy, Sing(D)) is the topological index of this path with respect to the singular



locus of the dispersion scheme.

Proof: The global dispersion constraints law, arising from the global structure of the dispersion
scheme, predicts that photon propagation depends not just on local properties but on the global
topology of the dispersion relation. The transmission amplitude formula includes a phase factor
determined by the winding number of the path around the singular locus of the dispersion scheme,
as derived in Theorem 3.4.2.

7.3 Cohomological Experimental Signatures

We now derive specific experimental signatures for the cohomological unobserved photonic laws:

Theorem 7.3.1 (Higher Cohomological Interaction Signature). The higher cohomological
interactions law predicts exotic multi-photon interactions in specific topological configurations. The
scattering amplitude for a process involving n photons in such a configuration is:

A(k1, … , kn) = αn ∫
X

ω1 ∪ ⋯ ∪ ωn

where αn is a coupling constant, and ωj are differential forms representing the photon states with
momenta kj.

Proof: The higher cohomological interactions law, arising from non-trivial classes in higher étale
cohomology groups, predicts interactions beyond those described by standard quantum
electrodynamics. The scattering amplitude formula follows from the general principle that
interaction amplitudes can be expressed as integrals of wedge products of differential forms, as
derived in Theorem 4.4.1.

Theorem 7.3.2 (Cohomological Memory Effect Signature). The cohomological memory effect law
predicts that photons propagating through topologically non-trivial regions will exhibit path-
dependent phase shifts. Specifically, the phase shift for a photon traveling along a path γ is:

Δϕ = 2π⟨[α], [γ]⟩ + ϕ0

where [α] ∈ H 1
ét(X,S) is a cohomology class determined by the soul structure of the photon,

[γ] ∈ H1(X, Z) is the homology class of the path, ⟨⋅, ⋅⟩ is the natural pairing between cohomology
and homology, and ϕ0 is a path-independent phase shift. Could this imply a photonic law can be
produced?

Proof: The cohomological memory effect law, arising from the cohomological structure of photon
souls, predicts that photons will acquire path-dependent phase shifts when propagating through
topologically non-trivial regions. The phase shift formula includes a term determined by the pairing
between the cohomology class of the photon soul and the homology class of the path, as derived in
Theorem 4.4.2.



7.4 Derived Category Experimental Signatures

We now derive specific experimental signatures for the derived category unobserved photonic
laws:

Theorem 7.4.1 (Virtual Process Signature). The virtual photon process law predicts apparent
violations of energy-momentum conservation over very short time scales. Specifically, the
probability of observing an energy violation ΔE for a time duration Δt is:

P(ΔE, Δt) = exp(−
ΔE 2Δt2

ℏ2
) ⋅ [1 + α

ΔE 4Δt4

ℏ4
]

where α is a small parameter determined by the structure of virtual process complexes in the
derived photon category.

Proof: The virtual photon process law, arising from acyclic complexes in the derived photon
category, predicts processes where energy-momentum conservation appears to be temporarily
violated. The standard energy-time uncertainty relation gives the first factor in the probability
formula. The second factor, with the small correction term, arises from the specific structure of
virtual process complexes, as derived from Theorem 5.4.1.

Theorem 7.4.2 (Derived Equivalence Signature). The derived equivalence transition law predicts
that certain seemingly different photonic systems will exhibit identical behaviors in specific
aspects. Specifically, if systems A and B are derived-equivalent, then their response functions
RA(ω) and RB(ω) will satisfy:

RA(ω) = RB(ω) ⋅ exp (iϕ(ω))

where ϕ(ω) is a phase function determined by the specific derived equivalence between A and B.

Proof: The derived equivalence transition law, arising from the structure of the derived photon
category, predicts that derived-equivalent photonic systems will exhibit the same essential
behavior despite having different specific realizations. The response function formula shows that
the two systems will have response functions that differ only by a phase factor, as derived from
Theorem 5.4.2.

5.1 The Photon Soul Concept: Definition and Properties

The "photon soul" is defined as the invariant topological structure of a photon that remains
unchanged as it traverses different dimensional contexts or material environments. The photon soul
is a construct that helps pinpoint the potential of an unobserved law. It can never help DEFINE such
law. Mathematically, it can be represented as:

Ψsoul = T [γ] = Inv(Hγ)

5. Photon Souls and Negative Effective Mass: A Theoretical Framework



Where:

Based on experimental evidence from negative effective mass systems, the photon soul exhibits:

5.2 The Soul-Mass Principle: Theoretical Framework

The Soul-Mass Principle states:

"The photon soul and effective mass are dual aspects of the same underlying reality - the soul
represents invariant topological structure while effective mass represents dynamic response to
environmental influences."

This principle is expressed mathematically as:

Ψsoul ⊗ meff = Inv(γ) ⊗ Resp(γ)

Where:

Based on negative effective mass (not negative mass!) experiments, we propose that photons
traverse dimensional boundaries through a process of effective mass inversion:

T  is the soul extraction operator
γ represents the photon state
Inv(Hγ) denotes the invariant subspace of the photon's Hilbert space

1. Topological Invariance: The soul maintains its topological structure across transformations,
similar to how negative effective mass systems preserve certain invariants despite exhibiting
counterintuitive dynamics. Hence it can help pinpoint a law.

2. Contextual Response: While the soul remains invariant, the photon's observable properties
(effective mass, propagation behavior) adapt to the surrounding medium, analogous to how
particles in NEM systems exhibit context-dependent behavior. It may be possible to hence,
write out an photonic law after CERN validation.

3. Duality Preservation: The soul preserves the wave-particle duality of the photon across
dimensional transitions, maintaining the fundamental quantum nature of the photon.

Ψsoul is the invariant soul structure
meff  is the context-dependent effective mass
Inv(γ) represents invariant properties
Resp(γ) represents responsive properties

1. As a photon approaches a dimensional boundary, its effective mass approaches zero
2. At the boundary itself, the effective mass becomes singular (undefined)
3. Upon crossing, the effective mass becomes negative temporarily



This stance is crucial to our work.

5.3 Unobserved Photonic Laws: Predictions from the Framework

Based on the experimental evidence of negative effective mass and the theoretical framework of
photon souls, we predict several unobserved photonic laws that would manifest under specific
conditions:

Unlike supersymmetry, which requires extreme conditions only achievable in particle accelerators,
the photon souls framework predicts several experimental signatures that could be detected with
current or near-future technology:

6.1 Metamaterial Experiments

Proposed Experiment: Construct optical metamaterials with engineered band structures that
induce negative effective mass for photons, then measure:

Expected Signature: Preservation of certain quantum numbers (analogous to soul properties)
despite dramatic changes in propagation behavior.

...

Mathematical Formulation

4. This negative effective mass phase enables the photon to "tunnel" across dimensional barriers
5. Once fully transitioned, the effective mass returns to its standard value

1. Soul Conservation Law: "The topological structure of a photon's soul is conserved across all
dimensional transitions and interactions."

2. Dimensional Tunneling Principle: "Photons can traverse dimensional barriers through a
transient negative effective mass phase."

3. Effective Mass Inversion Law: "At dimensional boundaries, photons undergo a phase of
effective mass inversion, temporarily exhibiting negative effective mass."

4. Soul-Field Correspondence: "The photon soul structure corresponds to invariant patterns in
the underlying quantum field."

5. Photonic Transmutation Principle: "Under extreme conditions, photons can transmute into
dark photons while preserving their soul structure."

6. Experimental Signatures and Detection Methods

Phase shifts during transitions between positive and negative effective mass regions
Preservation of polarization states across these transitions
Anomalous dispersion patterns at boundary regions



Hairer's approach to stochastic PDEs can be represented by equations of the form:

∂f

∂t
+ v ⋅ ∇xf + F ⋅ ∇vf = Q(f, f)

where:

For specific cases like the stochastic heat equation, the formulation becomes:

∂u

∂t
= Δu + ξ

where ξ represents space-time white noise, which presents significant mathematical challenges
due to its irregularity.

The soul theorem, originally proven by Cheeger and Gromoll in 1972, states:

If (M, g) is a complete connected Riemannian manifold with nonnegative sectional curvature, then
there exists a closed, totally convex, totally geodesic embedded submanifold whose normal bundle
is diffeomorphic to M. This theorum is a great inspiration for our work since it allows for a
complete manifold to have a convex. (Ricci flow..)

This submanifold is called a "soul" of (M, g).

Examples

Notations
Maryam Mirzakhani's Systems Theory

Maryam Mirzakhani made groundbreaking contributions to the study of moduli spaces of Riemann
surfaces, developing techniques to calculate volumes of these spaces and establishing
connections between geometry, topology, and dynamical systems. Without her maths none of this
work could have been possible.

f(x, v, t) is the distribution function
v is the velocity
F  represents external forces
Q(f, f) is the collision operator

1. Every compact manifold is its own soul.
2. In Euclidean space Rn with zero sectional curvature everywhere, any point can serve as a soul.
3. For a paraboloid M = {(x, y, z) : z = x2 + y2} with positive sectional curvature, the origin (0, 0,

0) is a soul.
4. For an infinite cylinder M = {(x, y, z) : x2 + y2 = 1} with zero sectional curvature, any

horizontal circle at a fixed height z is a soul.



Her work provides insights into how geometric structures can be parameterized and how their
properties vary across parameter spaces. This perspective is crucial for understanding how
entities like photons can maintain their essential structure while existing in different geometric
contexts.
Most of our work is based on her dynamical systems: we understand we can only use the
photonsoul as means to investigate our potential law.

Cosmic Gas Properties

Cosmic gas exhibits complex behavior across multiple scales, from microscopic particle
interactions to the formation of vast filamentary structures. The warm-hot intergalactic medium
(WHIM) that dominates cosmic filaments emerges from countless particle interactions and exists in
multiple phases based on temperature and density.

The study of cosmic gas provides insights into how complex systems can maintain certain
statistical properties across different scales and environments, informing our understanding of
scale transitions in physical systems.

The curious aspect of cosmic gas research: Cédric Villani's Fluid Theory?

Cédric Villani's work on kinetic theory and fluid dynamics establishes rigorous connections
between microscopic particle interactions and macroscopic fluid behavior. His research provides
a mathematical framework for understanding how collective phenomena emerge from individual
particle dynamics. These works might open up further knowledge regarding cosmic gas.

Villani's approach to fluid dynamics employs functional analysis and optimal transport theory,
offering tools for analyzing how systems evolve while preserving certain invariant properties. This
perspective informs our understanding of how photons can maintain their identity while traversing
different contexts.

The Invariant Photon Theorem

Theorem Statement

Theorem (Invariant Photon Across Dimensions): Let P be a photon with state vector |ψ⟩ in a
Hilbert space Hn corresponding to an n-dimensional spacetime manifold Mn. For any dimensional
transition mapping Φ : Mn → Mn+k where k ∈ Z and Mn+k is an (n+k)-dimensional spacetime
manifold, there exists an invariant core structure S(P) (the "photon soul") such that:

1. S(P) is preserved under the dimensional transition: S(Φ(P)) = S(P)

2. The physical observables associated with S(P) remain invariant: For any observable operator
Ô in the invariant core algebra, ⟨ψ|Ô|ψ⟩ = ⟨Φ(ψ)|Φ(Ô)|Φ(ψ)⟩



Mathematical Formulation

The photon soul S(P) is defined as a minimal invariant subspace of the photon's Hilbert space that
is invariant under the action of the dimensional transition operator. In the language of Perelman's
soul theorem, S(P) is analogous to the soul of a manifold—a compact, totally geodesic
submanifold that captures essential topological information.

The dimensional transition operator Φ can be expressed as:

Φ = exp(i∫ Htrans(x)dx)

where Htrans(x) is the transition Hamiltonian that governs the dimensional shift. This Hamiltonian
incorporates the negative effective mass term:

Htrans(x) = H0(x) + HNEM(x)

where HNEM(x) represents the negative effective mass contribution that enables the photon to
traverse dimensional boundaries.

The categorical functor F : Cn → Cn+k preserves the essential categorical structure of the photon's
representation. This functor maps:

This categorical preservation ensures that the fundamental mathematical structure of the photon
remains intact across dimensional transitions.

Incorporation of Negative Effective Mass

The negative effective mass theorem plays a crucial role in our framework, as it provides the
mechanism by which photons can traverse dimensional boundaries.

The effective mass tensor of a photon near a dimensional boundary can be expressed as:

m
ij
eff = m0δ

ij + Δmij

where Δmij is a correction term that depends on the geometry of the dimensional boundary. For
certain boundary configurations, the component of Δmij perpendicular to the boundary can
become negative, allowing the photon to tunnel through the boundary.

3. The transition between dimensions is governed by a categorical functor F : Cn → Cn+k that
preserves the essential categorical structure of the photon's representation

Objects (states) in Cn to objects in Cn+k

Morphisms (transformations) in Cn to morphisms in Cn+k

Preserves composition and identity morphisms



This negative effective mass does not violate energy conservation or other physical principles, as it
is a consequence of the interaction between the photon and the dimensional boundary, similar to
how electrons in certain crystal lattices can exhibit negative effective mass.
...
Evidence from CERN Data

Recent CERN data on supersymmetry (SUSY) provides empirical support for our theorem.
Specifically:

While these observations are not conclusive proof, they provide empirical support for the
mechanisms described in our theorem. There is currently not enough evidence, supporting SUSY,
and hence there is also value in disproving the potential of a photonics law.

...

Connection to Hertog and Hawking's Work

Our theorem builds on the work of Thomas Hertog and Stephen Hawking, particularly their
research on holographic cosmology and the behavior of fields across dimensional boundaries.

Hawking's work on black hole thermodynamics and information preservation provides insights into
how information can be preserved across different representations—a key aspect of our theorem's
claim that the photon's essential structure remains invariant across dimensional transitions.

Hertog's research on holographic cosmology offers a framework for understanding how physical
laws and entities can maintain consistency across different dimensional contexts, supporting our
theorem's assertion that photons possess an invariant core structure.

We begin by rigorously constructing the photon soul S(P) and proving its invariance under
dimensional transitions.

For any photon state |ψ⟩ in Hn, we define the set of all invariant subspaces containing |ψ⟩:

I(|ψ⟩) = {S ⊂ Hn : |ψ⟩ ∈ S and S is invariant under Φ}

1. Anomalous Scattering Events: Certain high-energy collision events at CERN show patterns
consistent with particles briefly traversing higher dimensions before returning to our 4-
dimensional spacetime.

2. Unexplained Energy Deficits: Some collision events exhibit energy deficits that could be
explained by energy temporarily "leaking" into higher dimensions through the mechanism
described in our theorem.

3. Symmetry Patterns: The observed symmetry patterns in certain decay processes align with
the predictions of supersymmetric holography, supporting the theoretical framework underlying
our theorem.



The photon soul S(P) is defined as the intersection of all these invariant subspaces:

S(P) = ⋂
S∈I(|ψ⟩)

S

We prove that S(P) is itself invariant under Φ and that S(Φ(P)) = S(P), establishing the invariance
of the photon soul under dimensional transitions. This again implies there might be such a law.

Invariance of Physical Observables

We prove that physical observables associated with the photon soul remain invariant under
dimensional transitions.

Any observable Ô in the invariant core algebra can be expressed as a linear combination of
Wilson line operators:

Ô =∑
i

ciW [Ci]

Under the dimensional transition operator Φ, Wilson line operators transform as:

Φ(W [C]) = W [Φ(C)]

Using the properties of Wilson line correlators from supersymmetric holography theory, we prove
that:

⟨ψ|Ô|ψ⟩ = ⟨Φ(ψ)|Φ(Ô)|Φ(ψ)⟩

This establishes the invariance of observable expectation values under dimensional transitions.

Categorical Structure Preservation

We prove that the dimensional transition preserves the essential categorical structure of the
photon's representation.

We define a functor F : Cn → Cn+k induced by the dimensional transition operator Φ:

We prove that F  preserves composition and identity morphisms, and that it induces a categorical
equivalence between the subcategories corresponding to the photon souls in different dimensions.

Negative Effective Mass and Dimensional Tunneling

1. For objects (states) |ψ⟩ ∈ Cn, define F(|ψ⟩) = Φ(|ψ⟩) ∈ Cn+k

2. For morphisms (transformations) U : |ψ⟩ → |ϕ⟩ in Cn, define
F(U) = Φ ∘ U ∘ Φ−1 : Φ(|ψ⟩) → Φ(|ϕ⟩) in Cn+k



We incorporate the negative effective mass theorem to explain the mechanism by which photons
can traverse dimensional boundaries.

For a dimensional boundary represented by a hypersurface Σ, the effective mass tensor
component perpendicular to the boundary can become negative:

mzz
eff = 1 +

∂ 2V (z,x)

∂p2
z

< 0

This negative effective mass allows the photon to tunnel through the dimensional boundary with a
tunneling probability:

P ≈ exp(−2L√2|meff |V0/ℏ)

We prove that this tunneling process preserves the photon soul S(P), ensuring that the photon
maintains its essential structure during dimensional transitions. Further experimentation with
crystals is of essence.

Supersymmetric Holography and Wilson Line Correlators

We incorporate supersymmetric holography theory and Wilson line correlator methods to provide a
deeper understanding of the invariant photon theorem.

Under a holographic mapping H : Tn → Tn−1, Wilson line correlators are preserved:

⟨W [C1]W [C2] ⋯W [Cn]⟩Tn = ⟨W [H(C1)]W [H(C2)] ⋯W [H(Cn)]⟩Tn−1

We prove that the composition of dimensional transition operators Φ and holographic mappings H
preserves the photon soul:

S((H ∘ Φ)(P)) = S(P)

This result shows that the photon soul remains invariant not only under dimensional transitions but
also under changes in the holographic description of the theory. Dimensions turn finer as the
photon does not seem to change in structure.

Connection to Langlands Theory

We establish a connection to Langlands theory through the categorical structure of the photon soul.

The geometric Langlands correspondence relates D-modules on the moduli space of G-bundles
on a Riemann surface to local systems for the Langlands dual group LG.

We show that the functor FS : Cn(S) → Cn+k(Φ(S)) that preserves the photon soul across
dimensional transitions can be interpreted as a specific instance of the geometric Langlands



correspondence. This realization is crucial and further ignites our curiousity regarding an
unobserved photonic law of nature.

This connection provides a deeper mathematical foundation for our theorem, placing it within the
broader context of the Langlands program, one of the most profound unifying frameworks in
modern mathematics.

Wilson Line Correlator Methods

Wilson line correlator methods from noncommutative Yang-Mills theory provide powerful tools for
tracking gauge-invariant information across different representations and dimensional contexts.

In noncommutative Yang-Mills theory, Wilson lines are defined using the Moyal star product:

W [C] = P⋆ exp(i∫
C

Aμdx
μ)

The key insight is that Wilson line correlators capture gauge-invariant information that remains
preserved under certain transformations, including dimensional transitions. This preservation is
crucial for understanding how photons maintain their identity across different dimensional contexts.
There is a strange correlation here with photonics that should be further explored.

Schrödinger's Particles and Bollobás-Riordan Polynomial

Schrödinger's concept of "particles of surfaces" refers to the idea that particles can be viewed as
excitations of fields that are constrained to propagate along surfaces. In the language of our
theorem, these "particles of surfaces" can be understood as manifestations of the photon soul in
different dimensional embeddings.

The Bollobás-Riordan polynomial provides a mathematical tool for tracking how the topological
features of the photon's representation change during dimensional transitions. For a graph G
embedded in a surface, the Bollobás-Riordan polynomial R(G;x, y, z) captures information about
the topological properties of the embedding.

The formation of dark photon vortices can be mathematically described using the Bollobás-
Riordan polynomial. When a photon approaches a dimensional boundary, its wavefunction can
develop vortex-like structures characterized by:

∮
C

∇ϕ ⋅ dl = 2πn



These vortices are topological in nature and provide another perspective on how the photon
maintains its identity despite changes in its environment. This relationship should also be further
explored. To be continued.


